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since the heat transfer becomes a constant the &-dependence 
does not affect the temperature distribution which is governed 
by the solution far from the wall. To show that the right of 
equation (12) approaches a constant for Pr + 0, consider the 
matched asymptotic solutions of the velocity distribution. In 
the usual limiting process Pr disappears from (7) and (8), 
yielding the outer solution which is independent of Pr. For the 
inner solution, using the fact that S(q ; Pr) + e(O), independent 
ofPr, the explicit Pr-dependence disappears from equation (7) 
provided the new variable Pr-I’*[ as function of Pr-“*q is 
employed. Consequently, Pr”‘Y(0; Pr) becomes indepen- 
dent of Pr as Pr -+O, suggesting the expression for 
dimensionless friction given by equation (12). 

The remaining Pr-dependence in dimensionless friction is 
small, as seen from Fig. 1, and appears to be analogous to that 
of the heat transfer. The Pr-dependence may of course be 
further reduced by empirical fit to computer results in a 
manner similar to that discussed for the heat transfer. 

The distributions of dimensionless temperature and 
velocity of Figs. 2 and 3 show how the present dimensionless 
variables nearly eliminate variations in wall gradients. The 
significant changes in velocity distributions with Prandtl 
number far from the wall appear to have a marginal effect on 
temperature distributions which prove to be nearly similar for 
all fluids. 

Finally, it is noted from the ratio of equations (11) and (12) 
that an appropriate parameter group expressing an analogy 
between heat transfer and friction is, for the present problem, 

Nu, Ra:” 

(L/P) W/av)’ 

This parameter group varies less than 10% over the complete 
range of Prandtl numbers. 
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INTRODUCTION 

THE MECHANISMS of mixed convection from a horizontal line 
source of heat have come under active investigation relatively 
recently. The earliest study by Wood [1], followed by that of 
Wesseling [Z], considered mixed convection from weakly 
buoyant plumes. Afzal [3] presented a complete analysis 
describing the entire flow regime, ranging from weakly to 
strongly buoyant plumes. It is well known that in a free 
convection plume from a line source of heat, the centerline 
velocity increases continuously as .x1/5, x being the distance 
downstream of the source. Thus, even in the presence of anon- 
zero free-stream velocity, it appears that, at sufficiently large x, 
buoyancy effects would dominate the transport mechanism. 
This corresponds to a strongly buoyant plume. Such is the flow 
studied here, with the buoyancy force and the free-stream flow 
being in the same direction. 

Afzal [3] considered the mixed convection from a line 
source in terms of two coordinate expansions, a direct 
coordinate expansion and an inverse, valid for small and large 
streamwise distance from the source, respectively. The direct 
coordinate expansion was taken in terms of a variable 5, 5 
being proportional to x ‘I’. The inverse coordinate expansion 
was constructed in terms of [- *j5. The solution for the first 11 
and the first seven terms, in the direct and inverse coordinate 
expansions, respectively, are presented. However, these 
expansions were constructed entirely on the basis of the 
classical boundary-layer solution. The non-boundary-layer 
effects, for example, the effect of the flow in the ambient, 
resulting from the entrainment into the boundary layer, was 
not considered. Under some circumstances these non- 

boundary-layer effects also contribute significantly. It then 
becomes necessary to simultaneously assess both the effects of 
the presence of external free-stream velocity and of the non- 
boundary-layer effects. The first such simultaneous and 
consistent assessment in the analysis of mixed convection 
flows was that by Carey and Gebhart [4]. 

The method ofmatched asymptotic expansions is used here 
to obtain a solution valid at a large downstream distance from 
the source. Two perturbation parameters, sH and sl, 
characterize the non-boundary-layer and the non-zero free- 
stream velocity effects, respectively. These effects are 
considered simultaneously, as perturbations of the associated 
natural convection plume flow. It is shown that corrections 
due to higher-order effects enter into the expansion before the 
fifth term of the inverse coordinate expansion considered by 
Afzal [3], for the same flow. Results of the numerical 
computations are presented for Pr = 0.7. 

ANALYSIS 

The mixed convection flow arising from an infinitely long 
horizontal line source of heat is considered as a two- 
dimensional steady flow. With usual Boussinesq approxima- 
tions, neglecting the viscous dissipation and pressure terms in 
the energy equation, the full two-dimensional governing 
equations take the form 
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NOMENCLATURE 

Ai 

c* 
D 

F, 

9 
G 
Gi 
Gr, 
H 

Hi 

Zo 

Ji 

k 
N 
Pr 

Q 

Qo 
r 

constants, defined in (19a)-(19d) and (22); i = 0, 
1,2,3,4 
specific heat 
(g/?N/4vZ)_ 5’12 
terms in the inner expansion of the stream 
function $ ; i = 0, 1,2,3,4 
acceleration due to gravity 
4(Gr,/4)‘j4 
terms in the inner expansion of H ; i = 3,4 
(ax3/v2)BAT 
(t-;,);hT 
terms in the inner expansion of H; i = 0, 1,2, 3,4 

I 
m 

FoHo drl 
0 

terms in the inner expansion of the stream 
function $ ; i = 3,4 
thermal conductivity 
(Q:/&'~2C;~~)"514 
Prandtl number 
local thermal convected energy in the boundary 
layer 
thermal input per unit length of the line source 
radial polar coordinate measured from the heat 
source 

17 
Rex 
t 
to 
L 
u 

urn 
V 

X 

Y 

2/$(4Pr ZokvZ/gBQo)1'3 

te&erature 
centerline temperature 
ambient temperature 
velocity in the x-direction 
free-stream velocity 
velocity in the y-direction 
coordinate in the direction opposite to gravity 
coordinate normal to x. 

symbols 
coefficient thermal expansion 
Nx-3’5 

yw’E l/4 
2 

yG/4;c 
t-t,, in the inner expansion 
t - Tm, in the outer expansion 
coefficient of viscosity 
kinematic viscosity 
density 
tan-‘(y/x) 
streamfunction 
streamfunction in the outer expansion 
terms in the expansion for $ ; i = 1,2,. . . 

where the streamfunction + has been defined SO that 

V=$, and V=-I/J,. 

Boundary conditions are : 

y=O, $=$ru=ty=O; forall x 

y-03, I+,-+V,, t-t,; forall x. 

Also, for x > 0, the convected energy is 

m Q(x) = 
s 

pC,$,(t - t,) dy = Q, = constant 
-m 

(2) 

(34 

(W 

(4) 

where Q. is the thermal input per unit length of the line source, 
p is the density and C, is the specific heat. 

The inner and outer expansions are then taken as : 

Inner 

$ = 4&5kFoh) + @,@I) + @Ad + $#‘&I) 

+ EHJA~ + ~~Fdd + w~J,h) + ...I (5) 

0 = t--t, = AT[Ho(rj)+~MH1(q)+~;H2(q) 

+ &H&I) + EHGB(O) + dH.h) + w,G&) + ..I (6) 
outer 

J = @Jo+$l+Jiz+es+... (7) 

8= t--t, =o (8) 

where AT = Nx-“‘~ represents the temperature difference 
between the local centerline of the plume and the ambient, 
resulting from the zeroth-order boundary-layer solution, 
given by F, and Ho for velocity and temperature fields, 

respectively. The following quantities are defined : 

Gr = gBx3AT 
-= 

x 
VZ 

Y G 

4x 

s m 

N = (Q;/45g/?p2p2C;Z$“5 ; I, = F’oHo dtt 
0 

and p is the dynamic viscosity. 
Here, e, is taken to be Re,/(GrJ4)‘/’ so that F, and Ho, are 

the solutions of the natural convection boundary-layer flow 
shed from a line source in a quiescent ambient medium. 
Following Yang and Jerger [S], E” is chosen as (GrX/4)-‘14. 
Then Ed and Ed are related as : 

&g( = R&p 

where 

i? = 2V,/v(4Pr Zokv2/gjQ,)1’3. 

The parameter R is important in that if R >> 1 then 
the interaction terms corresponding to eycH would be negli- 
gible and the solution could be obtained by appro- 
priately superposing the solutions of Afzal[3] and Riley [6]. 
However, for ordinary ranges of Q, and V, encountered, of 
Q,-5OWm-‘andV,* l-10 cm s-l, R turns out to be a 
constant of the order of unity. 

The expansions (5) and (6) are now substituted into the 
governing equations (1) and (2). Perturbation equations are 
then obtained by collecting like powers of Ed, eH and +.,,E”. 

Employing usual asymptotic matching techniques, boun- 
dary conditions are obtained for each level of expansion in the 
inner and outer regions. After matching, it is found that the 
terms of inner expansion must satisfy the following equations. 

F’d’+12/5F,F;-4/5F;+H, = 0 (W 

H’f + 12/5 Pr (F,H,)’ = 0 (9’3 

F,(O) = F;;(O) = Fo(co) = H,(O)- 1 = Ho(O) = 0. (SC) 
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In the manner of Afzal [3], the governing equations up to 
O(& can be expressed as : 

LF,, H,) = RI,, n = 4% 3,4 (IO) 

UP,, I&) = R,,, u = I, 2,3,4 (II) 

where the operators, L,, and L,,, are defined as 

L,,(F,, H,) = F; 

L,,(F H ) = Pr-‘H” “3 II n 

n-1 

5R,, = -4 c [(3-r)F,F;_,+(r-l)F;F:,_,] (14) 
,=I 

n--l 
5R,, = -4 c [(3+r)H,F;_,+(3-r)Ffl”_,]. (15) 

,=i 

The boundary conditions being 

F,(O) = F:(O) = H:(O) = H,(m) = F;(co)- 5 a,, = 0 (16) 

where 6,” is the Kronecker delta. 
The governing equations at O(eu) and O&E”) are given by : 

.J;“+ ; (3F,Ji + FbJj)+ G, = 0 (17a) 

G’; + 4 Pr(3F& + 6GsFb + 3HJ;) = 0 (17b) 

J,(O) = J;(O) = J;(a)- ; A, cot (Zn/S) 

= G;(O) = Gs(co) = 0 (17~) 

and 

J;‘+ ; (- J,F;+2F6J6+3F,J;+ 2F,J; 

+u;F;)+ G, = i A,, cot (2n/5) (Isa) 

G;+;Pr(-J,Wo+2F,G;+3F,G;+3H,J; 

+7G,Fb+6G,F;+4H,J;) = 0 (18b) 

J4(0) = J:(O) = &(a)+ ; A, cot (2x/5) 

where 

= Gk(0) = G4(co) = 0 (18~) 

P&I) _ A, as f7-+03 (19a) 

P,(I) N (I/4)rl+Ai as tl-* * (19b) 

J,(q) _ (3/5)A, cot (2n/5)~ + A, as r~ + 03 (19~) 

J&t) - -2/5A, cot (2n/5)q + A, as q + m. (19d) 

In the outer inviscid region, tJO results merely from the 
presence of a free stream and is thus given by 

q0 = U,y = U,r sin 4 (20) 

where r is the radial distance from the heat source and 4 is the 
angular displacement from the positive x-axis. 

From matching considerations, the remaining terms of the 
outer expansion must satisfy, 

V2Gi=O; i=l,2,3 (2la) 

$&,=,-, = 4vAi_18’-1(r/D)3’5, $ilm=n = 0; i = 1, 2, 3 

(2lb) 

where 

D = (g/W/4+- “12, AZ = F,(a). 

Solving (21a) and (21b), we obtain, 

$i = 4vA,_ 1(r/D)c4-vs sin [(4- i)(n - d)/5]/ 

(22) 

sin[(4-i)n/5]; i = 1,2,3. (23) 

It has been pointed out by Afzal[3] that an indeterminancy 
arises in the inner expansions at O(& owing to the presence of 
eigensolutions. However, having restricted ourselves to terms 
of 0(&J in expansions (5) and (6), such an indeterminacy will 
not be encountered. Thus, the assumed form of the solution in 
(5) and (6) is appropriate to O(E$). The total convected energy 
Q(x) defined in (4) now becomes, in view of (5) and (6) 

Q(x) = 4Pr(Nsk4gj/vZ)“4 m 
s 1 -c@ 

HOP;+ j, &h [& FL] 

+ E”(H& + G&L) + Q,,E&~& + F; G, +&G,) 
1 

dr/. (24) 

However, using the energy equation ofeach level ofexpansion 
and the corresponding boundary condition it can be shown 
that each of the integrals on the RHS of (24) vanishes 
identically, except for 

s 

m 
FbH, d+ 

-m 

Thus, the requirement in (4) that Q(x) be constant is still 
satisfied by the expansion. 

RESULTS AND DISCUSSION 

The inner region equations (9aH18c) were solved for Pr 
= 0.7 using a modified predictor-corrector method sup- 
plemented by a shooting algorithm. Values of F;(O), HAO), i 
= 1,2,3,4; and J;(O), J;(O), G,(O) and G,+(O) were guessed and 
subsequently corrected so as to satisfy the far field boundary 
conditions. A fixed step size of Ar) = 0.05 was employed and 
‘infinity’ was taken to be at 1 = 15. 

Values of F;(O), H,(O), A,, i = 1,2,3,4; and J;(O),&(O), G3(0) 
and G4(0) are listed in Table 1. From this table it can be seen 

Table 1. Computed constants for mixed convection flow from a line source plume, for Pr = 0.7 

0 1 ; 3 4 

F;(o) 0.6618 0.0150 0.0172 0.0043 -0.ooo3 J;(O) = 0.0420 .&(O) = 0.0102 
HXO) 1.0 -0.1550 -0.0018 0.0093 0.0018 G,(O) = -0.3002 G,(O) = -0.0339 
Ai 0.9313 -0.4391 0.0905 -0.0952 - 0.0492 
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that 

UI,=, = (4v/~)(GrJ4)“~[0.6618 

+ Ed0.015) + ~i(O.0172) + E&(0.0043) 

+ ~dO.042) + E$( -0.0003) + ~,&~0.0102)] (25) 

2,---t, = Nx-3’5[1+&&-0.155) 

+E;(-0.0018)+~;(0.0093) 

Thus clearly the effects of .sy.sH term are negligible in 
comparison with those of &a term. In conclusion we can 
thereforesaythat thesolutioncanbeconvenientlyobtainedby 
appropriately superposing the results of [3] and [6]. 
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